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a b s t r a c t

A new computerized approach to the determination of water in 1-butyl-3-methylimidazolium
bis(trifluoromethylsulfonyl) imide, 1-butyl-3-methylimidazolium hexafluorophosfate and 1-ethyl-3-
methylimidazolium bis(trifluoromethylsulfonyl) imide ionic liquids (ILs) using the differential scanning
calorimeter (DSC) scans of their mixtures with water is presented here. This approach consists of a com-
bination of chaotic algorithms and a radial basis network (RBN). The data collected (heat flow signal)
from DSC scans of ILs and water mixtures are used to calculate six chaotic parameters (two Liapunov
exponents, two correlation parameters and two fractal dimensions), and then, these values are trans-
uto correlation coefficient
-Butyl-3-methylimidazolium
is(trifluoromethylsulfonyl) imide
-Butyl-3-methylimidazolium
exafluorophosfate
-Ethyl-3-methylimidazolium

ferred into an RBN trained computer for modeling and estimating output. The predicted results using the
RBN were compared with the measurements of water content carried out by the Karl Fischer technique
and the difference between the real and predicted values was less than 0.05 and 4.9% in the internal and
external validation, respectively. Such an integrated chaotic parameters (CPs)/RBN system is capable of
detecting and quantifying water content in the aforementioned ILs, based on the created models and
patterns, without any previous knowledge of this thermal process.
is(trifluoromethylsulfonyl) imide
ater content

. Introduction

Ionic liquids (ILs) are chemicals composed of an organic cation
nd an inorganic or organic anion. Because of their different
atures, ILs exhibit mixed inorganic and organic characters [1].

n addition, ILs can be tailormade for specific purposes by careful
election of their ions [2–4]. Given these two characteristics, these
hemicals have shown successful results and great promise in a
lethora of applications [5,6]. Their wide industrial applicability
eans that the knowledge of their physicochemical characteristics

s essential. Because of this, currently, one of the broadest research
ines consists of determining their most important features (den-
ity, viscosity, thermal properties, etc.). However, little attention
as been paid to the characterization of the purity of these com-
ounds, which has ultimately led to non-reproducible data in the

iterature [7].
Due to the notable influence of the presence of chemical impu-
ities on the physicochemical properties of ILs [8,9], a reliable and
ast method to detect these undesirable compounds is required.
he fact that the concentration of minute impurities may generate
n essential change in the physicochemical properties of the ionic

∗ Corresponding author. Tel.: +34 91 394 42 40; fax: +34 91 394 42 43.
E-mail address: jstorre@quim.ucm.es (J.S. Torrecilla).

039-9140/$ – see front matter © 2010 Elsevier B.V. All rights reserved.
oi:10.1016/j.talanta.2010.03.026
© 2010 Elsevier B.V. All rights reserved.

liquids leads us to believe that this alteration could be based on its
chaotic nature. In a recent paper, a chaotic character was detected
in the thermal degradation of ionic liquids using a thermogravi-
metric analyzer (TGA) and differential scanning calorimeter
(DSC) apparatus [10]. As a continuation of that work, this chaotic
dynamic of the thermal process previously found has been applied
here to design a detector of the most common impurity present
in ionic liquids, water. In particular, a chaotic tool has been
designed here to detect water in three hydrophobic ionic liquids
viz. 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)
imide ([bmim][Tf2N]), 1-butyl-3-methylimidazolium hexaflu-
orophosfate ([bmim][PF6]) and 1-ethyl-3-methylimidazolium
bis(trifluoromethylsulfonyl) imide ([emim][Tf2N]) and two
hydrophilic ILs viz. 1-ethyl-3-methylimidazolium ethylsulfate
([emim][EtSO4]) and 1-butyl-3-methylimidazolium methylsulfate
([bmim][MeSO4]) by differential scanning calorimeter apparatus.

2. Material and methods

2.1. Reagents, solutions and instrumentation
In this work, 1-butyl-3-methylimidazolium bis(trifluoro
methylsulfonyl) imide, 1-butyl-3-methylimidazolium hexaflu-
orophosfate and 1-ethyl-3-methylimidazolium ethylsulfate
bis(trifluoromethylsulfonyl) were used. These three ILs all present
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Table 1
Operating conditions of DSC experiments.

Operating conditions DSC

ILs
used

[bmim][Tf2N]
[bmim][PF6]
[bmim][MeSO4]
[emim][EtSO4]
[emim][Tf2N]

Temperature range (K) 123.15–303.15
Initial weight range of sample (mg) 9–21
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Table 2
Air equilibrium relative humidities of saturated salt solutions at T = 298.15 K [13].

Chemical Relative humidity (%)

Lithium chloride 11.1
Potassium acetate 22.5
Magnesium chloride 6-hydrate 32.5
Potassium carbonate 43.7
Sodium dichromate 2-hydrate 53.3
Dry N2 flow (mL min−1) 50
Heating rate (K min−1) 10
Volume of pans (�L) 120

purity higher than 99% and these have been supplied by io-li-tec.
n addition, 1-ethyl-3-methylimidazolium ethylsulfate ionic liquid
[emim][EtSO4], ≥95% purity, from Sigma-Aldrich Chemie GmbH,
ater content was 2000 ppm), and 1-butyl-3-methylimidazolium
ethylsulfate ([bmim][MeSO4] ≥95% purity, from Sigma-Aldrich

hemie GmbH, water content was 1000 ppm) were also used. All
he ionic liquid samples used were previously dried by heating at
0 ◦C for 24 h under reduced pressure. The mean of three replicate
easurements was reported.
Other non-ionic liquids compounds acquired by Panreac

himie S.A.R.L. viz. lithium chloride (LiCl ≥ 99%), potassium
cetate (CH3COOK ≥ 99%), magnesium chloride 6-hydrate
MgCl2·6H2O ≥ 99%), potassium carbonate (K2CO3 ≥ 99%), sodium
ichromate 2-hydrate (Na2Cr2O7·2 H2O ≥ 99.5%), sodium bromide
BrNa ≥ 99%), sodium nitrite (NaNO2 ≥ 98%), sodium chloride
NaCl ≥ 99.95%) have been used. For volumetric Karl Fischer titra-
ion, methanol dry (CH3OH, Riedel-de Haën, HYDRANAL-water

ass fraction < 0.01%) and standard (Riedel-de Haën, HYDRANAL-
tandard (5.00 ± 0.02) mg mL−1 as water) were used. The aqueous
olutions were prepared using ultra pure water obtained from

Milli-Q water purification system (Millipore, Saint Quentis
velines, France).

The measurements of the heat flow associated with mate-
ial transitions as a function of temperature were carried out on
Mettler Toledo DSC821e. The differential scanning calorimeter

quipment was calibrated according to the temperature range
sed and the manufacturer’s instructions [11]. The temperature
easurements were carried out with an accuracy of ±0.1 K. The

xperimental conditions and chemicals used to design, optimize
nd test the linear and non-linear models are shown in Table 1.
n every experiment, stainless steel pans with a volume of 120 �L
nd a purge flow of 50 mL min−1 of dry nitrogen were used. The
emperature range was between 123.15 and 303.15 K, whereas the
eating/cooling rate was fixed at 10 K min−1 [12].

.1.1. Hydration equipment
In order to input water into the ILs, an isopiestic method was

sed [13]. Several runs were carried out in air with different relative
umidity values which were generated by saturated solutions of
ifferent salts in water at 298.15 K and at atmospheric pressure
Table 2). The experimental device consists of a cylindrical glass
essel half filled with a saturated salt solution at 298 K [9]. The
ype of salt resulted in a known equilibrium air humidity inside
he device. A small cubic container made of glass was filled with IL
nd hung at the top of the vessel. The container was periodically
eighed until the mass remained constant. The IL was hydrated
ntil the relative change of the water content rate (WCR, Eq. (1))

etween two consecutive mass measurements of the container was
0.03%.

CR = Ms(t + 1) − Ms(t)
t · Mso

× 100 (1)
Sodium bromide 58.1
Sodium nitrite 64.4
Sodium chloride 75.4

where Mso, Ms and t are the initial sample mass, sample mass and
the hydration time in hours, respectively. The operating procedure
consisted of placing 15 cm3 of IL in a small closed vessel in which the
relative humidity (RH) is controlled by the saturated salt solutions
(25 cm3). After 5 days, it was verified that the equilibrium between
the water vapour and the IL (WCR < 0.03%) had been reached. In
this way, eight different unsaturated solutions of IL in water were
made. The hydration equipment was cleaned between experiments
by rinsing with acetone and water, followed by drying in an oven
at 333.15 K for 24 h [9].

Water content of every hydrated ionic liquid was measured by
a Karl Fischer titrator DL31 from Mettler Toledo and using the one-
component technique. The polarising current for potentiometric
end-point determination was 20 A and the stop voltage 100 mV. The
end-point criterion was the drift stabilisation (3 �g H2O min−1) or
maximum titration time (10 min). The measurement was corrected
for the baseline drift, defined as the residual or penetrating water
that the apparatus removes per minute. The expanded uncertainty
decreases with the mass fraction of water; at 3 × 10−2, 6 × 10−2, and
9 × 10−2 the uncertainty decreases by 2.5%, 0.6% and 0.4%, respec-
tively.

2.2. Chaotic parameters used

To check the chaotic nature of the thermal processes and their
relation with the presence of water in the three ILs studied, six
chaotic parameters have been calculated using DSC scans of mix-
tures composed of water and IL.

2.2.1. Liapunov exponents (LEs)
Liapunov exponents (LEs) characterize the dynamics of a com-

plex process and quantify the average growth of infinitesimally
small errors at initial points. LE values characterize the rate of
separation of infinitesimally close trajectories. This can be used to
measure the sensitivity of a system’s behaviour to initial conditions
[14]. The LE parameter has been calculated by Eq. (2).

LE = 1
�tm

m∑
k=1

log2
L(tk)

L(tk−1)
(2)

where �tm and L(tk) are the prediction time interval and the
distance between the developed points in the phase space, respec-
tively. This parameter is one of the most sensitive to determine
chaotic dynamic. Depending on the sign of the maximal LE (MLE),
different types of attractors (dynamical systems evolve after a long
period of time) can be found. MLE < 0 represent stable fixed, MLE = 0
or MLE = ∞ imply stable limit cycle or noise, respectively, and
0 < MLE < ∞ implies chaos, which means that neighboring points
of trajectories in the phase space diverge [15].
2.2.2. Autocorrelation functions (AFc(k)) and correlation (AF(k))
These parameters measure linearly how strongly on average

each data point is correlated with one k time steps away, Eqs. (3)
and (4), respectively. They are the ratio of the autocovariance to
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he variance of the data. In general, AF(k) and R2(k) are between 1
small k) and 0 (large k) [16].

Fc(k) =
∑N−k

n=1 (Xn − X̄)(Xn−k − X̄)∑N−k
n=1 (Xn − X̄)

2
(3)

F(k) =
∑N−k

n=1 (Xn − X̄)(Xn−k − X̄)

z

√∑N−k
n=1 (Xn − X̄)

2∑N−k
n=1 (Xn−k − X̄)

(4)

here X, X̄ and N represent the dataset of the measurements by
SC equipment, their average and the total number of datasets,

espectively. Given that the k value was assumed equal to 1 min,
hroughout the paper AFc(k) and AF(k) have been referred to as AFc
nd AF, respectively.

.2.3. Fractal dimension
Fractal dimension, in general, is a number that quantitatively

escribes how an object fills its space. In plane geometry, objects are
olid and continuous and given that they have no holes, they have
nteger dimensions. Fractals are rough and often discontinuous, and
o, they present non-integer dimensions. From a fractal geometry
oint of view, the fractal dimension is a measure of complexity that

s used to describe the irregular nature of lines, curves, planes or
olumes. In this work, the regularization dimension (RD) and the
ox dimension (BD) using a plain box method have been computed
y Fraclab version 2.0 (Toolbox of Matlab version 7.01.24704, R14)
17]. Considering the original signal as fractal, its graph will have
n infinite length. Taking into account RD and that all regularized
ersions have a finite length, the RD measures the speed at which
his convergence to the infinite takes place. To calculate BD, the
oftware works exactly in the same way as when computing the
egularization dimension except that in this case different box sizes
re tested. In almost all cases, the estimation of fractal dimension
y the box method is less accurate than the calculation by the reg-
larization method. All necessary parameters values to calculate
D and BD were selected by default configuration settings of the
oftware used [17].

.3. Learning, verification and validation sample

Every dataset of the learning and verification samples is
omposed of six aforementioned chaotic parameters with their
espective water content in ppm. These parameters are calcu-
ated from the DSC scans of two hydrophobic ionic liquids viz.
bmim][Tf2N] and [bmim][PF6] with different water concentra-
ions. As an example, DSC scans of six mixtures composed of
bmim][PF6] and water content are shown in Fig. 1. Using the
ydratation equipment, each ionic liquid has been artificially con-
aminated with 20 different water concentrations and in all cases,
hree replicate measurements of DSC scan for each sample were
arried out. The only difference between the verification and learn-
ng samples is that the latter is composed of 80% (96 datasets) of
ata and the former of the remaining 20% (24 datasets). Taking into
ccount that every datum of the verification sample should be inter-
olated within learning range, the data were randomly distributed
etween both samples.

The above mentioned chaotic parameters have been cal-
ulated using different DSC scans from a hydrophobic IL
emim][Tf2N] and two hydrophilic ionic liquids viz. [emim][EtSO4]
nd [bmim][MeSO4] ILs [12]. Using these chaotic parameters

nd their respective water content, two different external val-
dation samples have been made. The first and the second are
omposed of the results achieved using the hydrophobic ionic
iquid ([emim][Tf2N]), and both hydrophilic ILs ([emim][EtSO4]
nd [bmim][MeSO4]), respectively. These two external validation
Fig. 1. DSC scans of [bmim][PF6] with 2439.40 (–··–), 3841.23 (–·–), 6361.51 (– –),
8112.47 (- - -), 9950.96 (· · ·) and 11929.80 (—) ppm of water (exothermic up).

samples present the same format as the learning and verification
samples.

2.4. Radial basis network model

The radial basis model consists of three layers: the input, hidden
radial basis and output. The input layer has no calculation power
and serves as an input distributor to the hidden radial basis layer.
The net input to the hidden radial basis neuron is the vector dis-
tance between its weight vector (self-adjustable parameter of the
net), w, and the input vector, p, multiplied by the bias. The transfer
function of radial basis neurons is a Gaussian function, Eq. (5). The
radial basis function has a maximum of 1 when its input is 0. As the
distance between w and p decreases, the output increases. The bias
allows the sensitivity of the radial basis neuron to be adjusted. The
operation of the output layer is a linear combination of the radial
basis units according to Eq. (6) [18].

Gj(x) = 1

ex2
(5)

yk(x) =
nh∑
j

wjk · Gj(x) + wk (6)

In Eqs. (5) and (6), yk is the kth output unit for the input vector x, nh
is the number of hidden radial basis units, wjk is the weight between
the jth hidden and the kth output neurons, Gj is the notation for the
output of the jth radial basis unit, and wk is the bias. A radial basis
model (RBN) called radial basis networks exact fit was used in this
work. The RBN algorithm rapidly designs a radial basis network
with zero error on the design vectors, and depends on a matrix
of input vectors, a matrix of target class vectors and a spread of
radial basis functions commonly called spread constant. This is a
parameter related to the average distance between any two inputs.
As the spread constant was the only parameter to be optimized,
it was selected after trying more than 150 values and choosing the
best. The spread constant was analysed taking into account that the
estimations should be carried out using the lowest possible mean
prediction error (MPE), Eq. (7).

MPE = 1
N

∑ |rn − yn|
r

× 100 (7)

n

n

In Eq. (7), N, yn and rn, are the number of observations, model
estimation and real value, respectively [18,19].
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Table 3
Chaotic parameters from DSC scans of ionic liquids.

IL WC (ppm) LTi LTe AF AFc RD BD

[bmim][PF6]

2439.4 2.8995 × 10−8 4.2246 × 10−5 0.5789 0.5211 1.2935 0.8682
3841.2 3.4624 × 10−8 3.6228 × 10−5 0.5660 0.5347 1.3080 0.8699
6361.5 4.7035 × 10−8 5.3323 × 10−5 0.4794 0.5696 1.3145 0.8704
8112.5 4.5152 × 10−8 4.8651 × 10−5 0.4309 0.5415 1.3190 0.8718
9951.0 5.3592 × 10−8 4.9902 × 10−5 0.4195 0.5768 1.3266 0.8735

11929.8 5.3654 × 10−8 6.3402 × 10−5 0.4154 0.6563 1.3336 0.8782

[bmim][Tf2N]

1498.9 2.0044 × 10−9 6.1969 × 10−5 0.7014 0.5723 1.2710 0.8565
2007.0 2.0234 × 10−9 6.9662 × 10−5 0.4356 0.4177 1.2927 0.8506
2587.4 2.4021 × 10−9 6.9756 × 10−5 0.3407 0.3799 1.3123 0.8477
3335.8 5.2187 × 10−9 7.0348 × 10−5 0.3072 0.3245 1.3083 0.8463
4313.6 8.6435 × 10−9 7.1197 × 10−5 0.3014 0.2723 1.3151 0.8465
4753.2 1.8753 × 10−8 7.3220 × 10−5 0.2682 0.2490 1.3188 0.8411
5503.2 2.4657 × 10−8 7.4461 × 10−5 0.2311 0.2387 1.3311 0.8359
5985.6 3.0598 × 10−8 7.5324 × 10−5 0.2066 0.2238 1.3490 0.8311

[emim][Tf2N]

1503.3 8.4774 × 10−9 2.3945 × 10−6 0.5804 0.2996 1.2836 0.8483
2792.9 1.0960 × 10−8 2.8630 × 10−6 0.5510 0.2620 1.2922 0.8461
3946.0 1.4075 × 10−8 3.4646 × 10−6 0.5199 0.2503 1.2923 0.8433
5254.1 1.2874 × 10−8 1.4876 × 10−6 0.5295 0.2383 1.2975 0.8420
6881.8 8.6731 × 10−9 1.7460 × 10−6 0.4623 0.2357 1.2962 0.8412
7981.8 1.4888 × 10−8 1.0299 × 10−5 0.4211 0.2246 1.2965 0.8420
9089.0 1.9213 × 10−8 1.9965 × 10−5 0.3489 0.2235 1.2982 0.8405

10552.6 3.5702 × 10−8 2.0108 × 10−5 0.3345 0.2050 1.3062 0.8379
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light of these results, these models are inadequate.
Therefore, depending on the chaotic parameters and IL used, dif-

ferent simple linear regression models have been tested, Table 5.
In the case of [bmim][PF6], [bmim][Tf2N] and [emim][Tf2N] ILs the
best models are achieved using RD (R2 > 0.955), BD (R2 > 0.907) and
[emim][EtSO4] 470 2.3956 × 10−9 3.487

[bmim][MeSO4] 1018 2.3966 × 10−9 2.474

. Results and discussion

A database form by water content, Liapunov exponent with
espect to time and temperature, correlation coefficient, autocorre-
ation coefficient and two fractal dimensions were made. In the first
tudy, in every IL case, a linear model has been proposed. The sec-
nd consists of a linear and non-linear models to study the purity
f all ILs tested.

.1. Chaotic parameters

Three different types of chaotic parameters have been calcu-
ated viz. Liapunov exponents, correlation parameters and fractal
imensions.

.1.1. Liapunov exponent
This exponent characterizes the dynamic of process and the

eparation of infinitesimally close trajectories. In addition, it can
valuate the sensitivity of the system with respect to the initial
onditions. Given that Liapunov exponents with respect to time
LTi) and with respect to temperature (LTe) are non-integer and
ositive, Table 3, these describe some different strange attractors,
hose trajectories appear to skip around randomly.

.1.2. Autocorrelation functions (AFc) and correlation (AF)
oefficients

Considering that the correlation coefficient equal to unity means
hat the property is constant in time t with respect t −k (k = 1 min),
nd the average of correlating and autocorrelating parameters
re 0.43 (ranged 0.7 and 0.21) and 0.37 (ranged 0.66 and 0.2),
espectively, the variation of heat flow during 1 min could in part
epresent the chaotic dynamic of this process. Correlation function
or the heat flow of [bmim][PF6] IL with a water content of 2439.4
nd 11929.8 ppm measured by DSC equipment is shown in Fig. 2.
.1.3. Fractal dimensions
The RD and BD parameters define the output signals tortuos-

ty and these are a measure of complexity that is used to describe
he irregular nature of curves. In all ILs cases, the mean RD and BD
−6 0.2174 0.2097 1.2725 0.8411

−9 0.3550 0.2637 1.2598 0.8588

values with respect to the concentration of water are, respectively,
between 1.31 (range 1.35 and 1.27) and 0.85 (range 0.88 and 0.83),
Table 3. There is a mathematical relation between the water con-
tent of the ILs studied and RD and BD parameters values. That is,
the correlation coefficient of real water content, and those linearly
estimated using RD and BD values range between 0.815 and 0.955,
and 0.875 and 0.907, respectively.

3.2. Linear models

To quantify the water concentration present in the ionic liquids
tested using the easiest way possible, a simple global linear model
was designed, Table 4. In the best case, using LTi as the only inde-
pendent variable, the global model is able to estimate the water
content of three ILs with a correlation coefficient higher than 0.506
and a mean prediction error (MPE) less than 40.54%, Eq. (7). In the
Fig. 2. Correlation function for the heat flow of [bmim][PF6] IL and 2439.4 (- - -) and
11929.8 ppm (—) of water content measure by DSC equipment (k = 1 min).
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Table 4
Global linear models to estimate the water content (WC) in all ionic liquids tested.

Global linear model R2 Error (%)

WC = 1.29 × 1011·LTi − 2.66 × 103 0.506 40.54
WC = −8.20 × 106·LTe − 5.83 × 103 0.006 69.28
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Table 6
Parameters of RBN model and statistical results of verification process.

Parameters of RBN model

Input nodes 6
Output nodes 1
Spread value 1
WC = −8.82 × 10 ·AF + 9.26 × 10 0.136 58.71

WC = 1.56 × 103·AFc + 4.91 × 103 0.006 69.94
WC = 2.19 × 104·RD − 3.09 × 104 0.470 46.03
WC = 3.94 × 104·BD − 2.80 × 104 0.033 69.86

F (R2 > 0.943), respectively. Although at first sight, these models
ould be adequate, their MPE values are less than 8.1, 11.4 and 15.9%
nd signify that these models are unsuitable to estimate water con-
ent in the ILs studied.

Trying to find the best linear model, more than 128 multiple
egression models were tested. Taking into account the statistical
esults, the best model, in which the linear combination of all six
ndependent variables (both Liapunov exponents, both correlation
unctions and both fractal dimensions) was used, is shown in Eq.
8). Due to the MPE being close to 29%, this model is also inadequate.
ecause of this, a non-linear model has been tested.

WC = 3.104 × 105 + 1.095 × 1011 LTi − 1.318 × 108 LTe

− 3.891× 104 AF + 3.919 × 104 AFc − 7.639 × 104 BR

− 2.344× 105 BD (R2 > 0.851; MPE = 28.7%) (8)

.3. Non-linear model

Considering that the most influential variables of the process
o be studied are those selected in the aforementioned multiple
egression model (Eq. (8)), and that the water content must be non-
inearly estimated, a radial basis network model has been designed.

.3.1. Optimisation process of the radial basis model
The number of input nodes and output neurons are fixed by the

equirements of the system to be modeled. That is, six input nodes
both Liapunov exponents, correlation and autocorrelation func-
ions and two fractal dimensions) and one output neuron (water
ontent of the ILs). The hidden neurons number is optimized by

he radial basis network, itself. Then, the only parameter to opti-

ize is the spread constant. This process was carried out by testing
ifferent spread constant values between 0.001 and 15 [18]. The
esponse variables were the mean prediction error (MPE), Eq. (7)
nd correlation coefficient (R2) (predicted vs. experimental values).

Table 5
Lineal models to estimate the water content (WC) of each ionic liquid.

Linear model

[bmim][PF6]

WC = 3.41 × 1011·LTi − 7.84 × 103

WC = 3.25 × 1011·LTe − 8.81 × 103

WC = −4.65 × 104·AF − 2.95 × 104

WC = 6.32 × 104·AFc − 2.87 × 104

WC = 6.06 × 104·RD − 9.81 × 104

WC = 9.63 × 105·BD − 8.33 × 105

[bmim][Tf2N]

WC = 1.36 × 1011·LTi + 2.14 × 103

WC = 3.52 × 1011·LTe − 2.12 × 104

WC = −8.78 × 103·AF + 6.81 × 103

WC = −1.29 × 104·AFc + 8.06 × 103

WC = 1.13 × 104·RD − 1.48 × 104

WC = −1.93 × 105·BD + 1.67 × 105

[emim][Tf2N]

WC = 2.69 × 1011·LTi + 1.80 × 103

WC = 3.23 × 108·LTe − 3.48 × 103

WC = −3.32 × 104·AF + 2.15 × 104

WC = −1.03 × 105·AFc + 3.10 × 104

WC = 7.71 × 104·RD − 1.20 × 105

WC = −9.22 × 104·BD + 7.83 × 105
Statistical results
Correlation coefficient >0.99
Mean prediction error (%) 0.05

The design was analyzed taking into account that the estimations
should be carried out with the lowest MPE values possible. The
optimized spread constant found was equal to unity.

3.3.2. Verification process of the radial basis model
Once the RBN model had been optimized, the verification pro-

cess was carried out. In this process, the model was tested against
the verification sample that had not been included in the RBN learn-
ing. In the verification process, the MPE and R2 values between
experimental and estimated by RBN model were calculated (R2

higher than 0.99 and MPW less than 0.05%), Table 6. In the light of
these statistical results, water content of ILs and chaotic parameters
studied show a high mathematical dependence.

As was expected, of all the models developed, the RBN model
is the most reliable, since it provides a non-linear match between
chaotic parameters and water content. Nevertheless, the applica-
bility of this chaotic parameter/RBN approach must be tested in
other types of ionic liquids.

3.3.3. Validation process of the radial basis model
Here, two external validation processes have been carried out

viz. one for a hydrophobic IL ([emim][Tf2N]) and the other for
two hydrophilic ILs ([emim][EtSO4] and [bmim][MeSO4]). That is,
the optimized RBN model has been used to estimate the impu-
rity concentration in two different families viz. hydrophobic and
hydrophilic ionic liquids.

As was expected, the statistical results provided in the estima-
tion of water content of [emim][Tf2N] (similar to [bmim][Tf2N] and
[bmim][PF6], which were used in the learning process) are better

than those calculated when the water content of [emim][EtSO4]
and [bmim][MeSO4] was estimated, Table 7. Comparing the MPE in
both validation processes, the MPE using the first validation sample
(4.93%) is nearly two times the MPE error using the second valida-
tion sample (9.86%). In the light of these results, the RBN model

R2 Error (%)

0.904 12.05
0.705 33.14
0.907 11.37
0.726 30.23
0.985 8.117
0.875 21.18

0.876 16.3
0.786 24.29
0.716 26.94
0.856 19.61
0.823 18.49
0.907 11.41

0.563 47.76
0.676 44.08
0.943 15.99
0.885 26.59
0.899 21.04
0.890 18.25
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Table 7
Estimation of water content (WC) by RBN model and global statistical results of the
first and second external validation processes.

Ionic liquid Real WC Estimated WC

First external validation process

[emim][Tf2N]

1503.3 1590.5
2792.9 3012.6
3946.0 3846.5
5254.1 5546.9
6881.8 6941.0
7981.8 7822.6
9089.0 9200.2
10552.6 11987.5

Statistical result
Correlation coefficient 0.984
Mean prediction error (%) 4.930

Second external validation process
[emim][EtSO4] 470.0 521.9
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[bmim][MeSO4] 1018.0 929.6

Statistical result
Mean predition error (%) 9.863

s only adequate to estimate the water content of other similar
onic liquids to those used in the learning sample. Because of this,
imilarly to most of the modelization using neural networks, the
dequate selection of the ionic liquids that composed the learning
ample and the optimization of the operation range is required to
mprove the determination of this type of impurity.

When thermal processes are being analyzed and the water
ffects the thermal profile of the chemical studied, this approach
s useful to determine “on line” and quantify the concentration of

ater in a relatively easy way. Obviously, this approach is proposed
ot to replace the classical technique to measure water content of

onic liquids, but to open an interesting door to determine “on line”
he concentration of impurities present in such important chemi-
als.

. Conclusion

To determine impurity in ionic liquids, a new computer-
zed approach based on chaotic parameters is presented. Once
ix chaotic parameters have been calculated using DSC scans of
-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl) imide,
-butyl-3-methylimidazolium hexafluorophosfate and 1-ethyl-
-methylimidazolium bis(trifluoromethylsulfonyl) imide ionic

iquids with different water concentration values, the aqueous con-

ent in these ionic liquids have been estimated by linear (regression

odels) an non-linear (radial basis network) models. In the lat-
er case, during the verification process, the mean prediction error
ound was less than 0.05%. When the water content of a similar
L is estimated (first validation sample), this value is increased to

[
[

[

81 (2010) 1766–1771 1771

4.930%. When the water content of a completely different IL is
estimated the mean prediction error nearly doubles (9.863%). In
general, although these results were expected, these lead us to pay
more attention to select the most suitable ionic liquids to make a
useful database for a given application.

A non-linear mathematical dependence between the chaotic
parameters studied and the water content of ionic liquids stud-
ied have been found. When thermal processes are being analyzed
and the water affects the thermal profile of chemical studied, this
CP/RBN approach could be useful to determine the reliability of
the thermal measurements. Obviously, this CP/RBN approach does
not replace the classical techniques to measure the water content
of chemicals, but it opens a door to the “on line” determination
of impurities present in such important chemicals as ionic liquids
with incipient applications at industrial scale.
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